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LElTER TO THE EDITOR 

Topology and renormalisability 

R Banach 
Department of Theoretical Physics, Schuster Laboratory, University of Manchester, 
Manchester M13 9PL. UK 

Received 22 July 1980 

Abstract. Using functional methods and the automorphic formalism, it is shown that a field 
theory on a multiply connected background is renormalisable provided the corresponding 
theory on the universal covering space is renormalisable. 

It is widely recognised that in a full quantum theory of gravity, fluctuations in the 
topology of space-time, at least at the Planck length scale of distances, are likely to 
occur. On the other hand, should such a fluctuation happen to have got 'frozen in' at an 
early stage of the universe's lifetime, the universe would now be topologically non- 
trivial in the large. Considerations such as these have led in recent years to the 
exploration of properties of field theories which are a direct consequence of non-trivial 
space-time topology (see, e.g., the references). 

For scalar and spinor fields (the cases most frequently considered) one needs to 
demand that the space-time is multiply connected and in that case the automorphic 
formalism (Banach and Dowker 1979a, b, Banach 1980) is available to us in which the 
situation of interest is pulled back to the universal covering space of the multiply 
connected space-time. For interacting field problems, renormalisability is certainly an 
important topic and since renormalisability for the universal covering space is some- 
thing that may, in specific instances, be decided already, one would hope that the 
automorphic formalism would be capable of deciding the issue for the factor space too. 
It is the purpose of this Letter to show that this is indeed the case. 

Suppose TOM is our multiply connected space-time (T is time, M is the multiply 
connected spatial section (this split is (topologically) demanded by the requirement of 
global hyperbolicity-we may for convenience assume that the metric respects it too)) 
and let T O G  be the universal cover. We recall (Banach and Dowker 1979a, b, Banach 
1980) that fields on TOM are pulled back to fields on TOA? which satisfy 

4(F) = a(r>4(x) Vx E T O G ,  V y  E (1) 

where r is the discrete group of isometries of $f which yields M by point identification 
and a ( r )  is a representation of r in a compact matrix group (with indices suppressed). 
We denote such fields on T O G  by 4 = 4' and recall also that (for finite) there is an 
orthogonal split in the space of fields so that for any q5 we have uniquely 
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where 4" and 4' are the automorphic and perpendicular parts of 4 respectively. We 
finally remember that the propagators will also respect the above split: 

where index summations and space-time integrations have been suppressed in (4). 
We now consider the vacuum generating functional Z " ( J )  on TO&? given by 

inserting an automorphic S functional S(4 - 4") into the vacuum generating functional 
Z ( J )  on TO&? to restrict the integration to automorphic fields-identifying the result 
with the vacuum generating functional on T O M :  

=rIa  -- Z ( J ) .  (; 3 
We thus notice that we can get z " ( J )  by applying an operator II" to Z ( J ) .  Further, we 
can write (note the automorphic analogue of the Fadeev-Popov trick) 

S 6 
[dA]exp(A - A a ) - = !  SJ [dh"]! [dA']expA'- SJ 

I SJ 
S 

= N [dh '1 exp A '--. 

With the divergent integral over automorphic fields removed, IT" becomes a 
behaved operator; indeed, we find after translating the integration variable 
changing its name that 

Z"(J)  = I [dJ']Z(J", J') 

where the automorphic and perpendicular degrees of freedom of Z ( J )  are written 
explicitly separated in (7). Noting that in perturbation theory Z ( J )  is rendered 
integrable (in the Euclideanised sense) by the factor exp(;iJAJ), application of II" is a 
finite operation and thus the proof of renormalisability is reduced to the following trivial 
remark. Suppose Z ( J )  has been made finite in the limit E + E ~  (where E is some 
regularisation parameter) by using divergent, bare, €-dependent quantities in the action 
functional, then Z " ( J )  will be finite in the same limit since II" is independent of E .  

Some further remarks are in order. 
Since na is ipdependent of E ,  the counterterms needed in Z " ( J )  will be exactly those 

already present in Z(J)-the renormalisation prescription is left unaffected by passing 
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to T O M .  Now we can write 

where 

and Sr is the non-quadratic part of the action functional. It is clear that H a  and Er 
commute so that 

z " ( J )  = Er exp(4iJ"A"J"). (8) 

This tells us that to calculate a process on T O M  we need to calculate the same set of 
diagrams using the same set of vertices, but using only the automorphic parts of the 
covering space propagators. Now A" can be written as an image sum of covering space 
propagators (Banach and Dowker 1979a, b, Banach 1980) 

A"(X, x') = Ab, Y X ' ~ ( Y ) ,  (9) 

which in the troublesome coincidence limit splits into the sum of the divergent 
coincidence limit A(x, x)  plus the finite parts A(x, y x ) a ( y ) .  In multi-loop processes this 
state of affairs gives rise to nonlocal infinities of the form A(x, x)A(x, yx)a  ( y ) ,  etc, which 
are not cancelled by counterterms. Our analysis, however, guarantees that when all 
relevant diagrams are summed, all such nonlocal infinities automatically cancel without 
additional effort. Similar facts have already been noticed in certain specific calculations 
(Ford 1980, Birrell and Ford 1980, Toms 1980a, b). 

If one regards automorphic field theories not as theories in themselves but as 
representatives of individual sectors of Isham's twisted field theories (Isham 1978a, b, 
Avis and Isham 1978b), then one has to make the vacuum generating functional 
invariant under large as well as small gauge transformations. This can be done, for 
example, by taking linear combinations or products of sectors 2" over a (finite 
maximal) set of inequivalent a (Avis and Isham 1979, Chockalingham and Isham 
1980). Clearly the renormalisability argument goes through with little change in these 
cases. 

We note that na does not commute with the taking of logarithms. This means we 
cannot repeat the renormalisability proof for the connected or 1PI generating 
functionals. It is easy to see why. From (8) we see that the effect of 11" in the 
diagrammatic expansion of Z(J) is to replace each propagator by its automorphic part; 
thus IT", being an integral over J l ,  can only do this directly if the relevant propagator has 
a source attached. If not, the relevant cancellation is produced by an associated 
diagram wherein the propagator in question is broken and the two additional free ends 
are saturated with sources. Hence the need for disconnected diagrams. 

Since na commutes with functional derivatives (any 'boundary contributions' to 
l[dJ'] being zero by the damping effect of the exp($iJAJ) factor) we can equally well 
apply our analysis to the (disconnected) Green functions, S"Z/S(iJ)". We illustrate this 
with a simple example, namely the two-point function of a free scalar field in an 
arbitrary simply connected background geometry. With arbitrary J it is (variables 
suppressed) 

G z ( J )  = [-iA + (AJ)2] exp(3JAJ). (10) 
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We require essentially 

exp(ii J" A"J") I [dJ'](A"J" + A'J')' exp(iiJLA'J') 

x exp(:iJ'A'J' +iqiA'JL)/,,=o. (1 1) 

IIaG2(J) = G; ( J )  = [ - iA" + (A'J")'] exp(iiJ"A"J"). 

This can be evaluated trivially and when we insert it into (10) we find as expected 

(12) 
Nothing changes much when we consider interacting theories, except that we have to 
keep track of the space-time variables inside the vertices. However, the magnitude of 
the expressions generated rapidly becomes gigantic. For instance, the calculation of the 
two-point function in 44 theory to first order involves ten diagrams and produces 
expressions of several hundred terms. For this reason the calculation is best done on a 
computer, and the author has done some sample calculations using thk algebraic 
manipulation language REDUCE, which proved ideal for the purpose. The cases 
considered were, in qb4 theory, Z to first and second order, S'Z/S(iJ)' to first order; in 
4' theory (i.e. a quadratic theory with a quadratic perturbation) S'Z/S(iJ)' to second 
order. As with all algebraic manipulation programs, large amounts of core are required 
and the largest of the calculations mentioned reaches the practical limits of even a big 
machine so that it is not really possible to go beyond second order. In all cases II" 
behaved as expected, replacing all propagators by their automorphic parts. 

finite case) renormalisability for a 
multiply connected space is an essentially trivial issue-provided, of course, that it is 
under adequate control for the covering space. 

To conclude, we have seen that (at least in the 

The author would like to thank J S Dowker for many interesting conversations on the 
subject of the present Letter, and J G Taylor f.or encouraging him to undertake the 
explicit verification of the behaviour of II" described above. SRC support and the use 
of SRC computing facilities are gratefully acknowledged. 
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